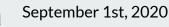
Probabilistic Risk Awareness (PRA) Framework to Generate Early-Warning Signals of COVID-19

Bank of Canada COVID-19 Webinar

Prateek Gupta (Mila, University of Oxford, The Alan Turing Institute) Nasim Rahaman (Mila, Max-Planck-Institute for Intelligent Systems Tübingen) Andrew Williams (Université de Montréal)



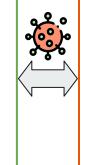
COVID -19 has posed a novel social planning problem

Health policy experts:

Min COVID-19 transmission (R_t)

S.t

- Keep society functioning
- Minimize deaths



Economists:

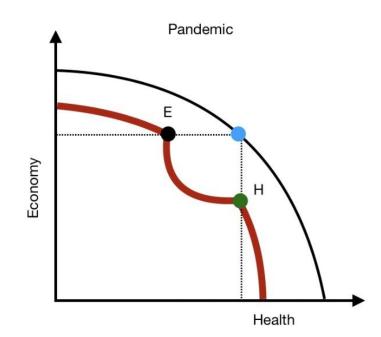
Max Social Welfare

S.t

- Technological constraints
- Incentive constraints

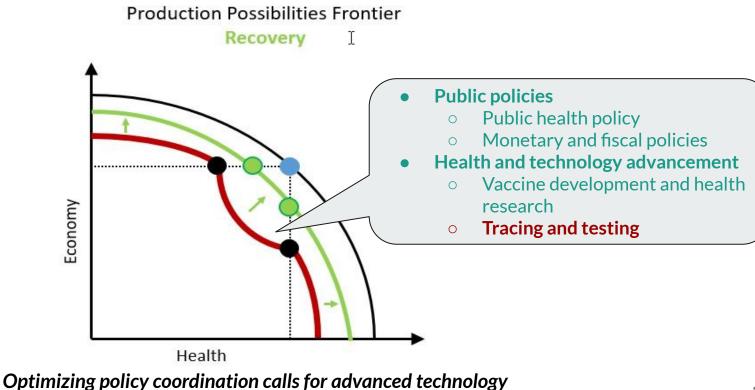
Inefficient economic and health outcome following COVID

Production Possibilities Frontier



Source: Gans(2020), "Health Before Wealth: the Economic Logic", March 25, 2020 https://blog.usejournal.com/health-before-wealth-the-economic-logic-9c5414ae259c

How could we expand the frontier during the pandemic?



Roadmap of the talk

- Probabilistic Risk Assessment (PRA) Framework for Tracing
- A Machine / Deep Learning approach to PRA
- An Application of PRA to Economic and Health Assessment
- Conclusion and ongoing research

COVI (Source code coming soon...)

COVI White Paper - Version 1.0

Yoshua Bengio^{2,3}, Tristan Deleu^{2,3}, Prateek Gupta^{2,4,5}, Hannah Alsdurf¹, **Nanor Minoyan** Richard Janda⁷, Max Jarvie⁸, Daphne Ippolito⁶, Tyler Kolody⁷, Harnois-Leblanc Sören Tegan Maharaj^{2,3}, Sekoul Krastev⁹, Dan Pilat⁹, Robert Obryk, **Akshay Patel** Meng Qu,^{2,10} Nasim Rahaman 2,11 , Valérie Pisano², Benjamin Prud'homme², Joanna Merkcx Irina Rish^{2,3}, Jean-Franois Rousseau¹², Abhinav Sharma⁷, Brooke Struck⁹, Andrew Williams Jian Tang^{2,10}, Martin Weiss^{2,3}, Yun William Yu¹³

We would like to thank Sumukh Aithal, Behrouz Babaki, Henri Barbeau, Edmond Belliveau, Vincent Berenz, Olexa Bilaniuk, Amélie Bissonnette-Montminy, Pierre Boivin, Emélie Brunet, Joé Bussière, Gaétan Marceau Caron, René Cadieux, Pierre Luc Carrier, Hyunghoon Cho, Anthony Courchesne, Linda Dupuis, Justine Gauthier, Joumana Ghosn, Gauthier Gidel, Marc-Henri Gires, Simon Guist, Deborah Hinton, Bogdan Hlveca, Bernd Holznagel, Samuel Huberman, Shrey Jain, Jameson Jones-Doyle, Dilshan Kathriarachchi, Giancarlo Kerg, Soundarya Krishnan, David Lazar, Frédéric Laurin, Sacha Leprêtre, Stéphane Létourneau, Libeo team, Alexandre Limoges, Danielle Langlois, Frédéric Laurin, Vincent Martineau, Lucas Mathieu, Philippe Matte, Rim Mohsen, Eilif Muller, Ermanno Napolitano, David Noreau, Ivan Oreshnikov, Satya Ortiz-Gagné, Jean-Claude Passy, Marie Pellat, Dan Popovici, Daniel Powell, Brad Rabin, Catherine Saine, Victor Schmidt, Shanya Sharma, Kareem Shehata, Pierre-Luc St-Charles, Marie-Claude Surprenant, Mélisande Teng, Julien Tremblay-Gravel, David Wu, and Lenka Zdeborova for their help.

https://arxiv.org/abs/2005.08502

ML/Epi/Econ Team

Yoshua Bengio

Hannah Alsdurf

Tristan Deleu Abhinav Sharma

Prateek Gupta

Soren Harnois-Leblanc

Akshay Patel

Christopher Pal

Bernhard Schölkopf

Jian Tang

David Buckeridge

Pierre-Luc Carrier

Olexa Bilanuik

Marc-André Rousseau

Tegan Maharaj

Victor Schmidt

Joanna Merckx

Pierre-Luc St Charles

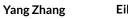
Martin Weiss

Nanoy Minoyan

Irina Rish

Meng Qu

Andrew Williams

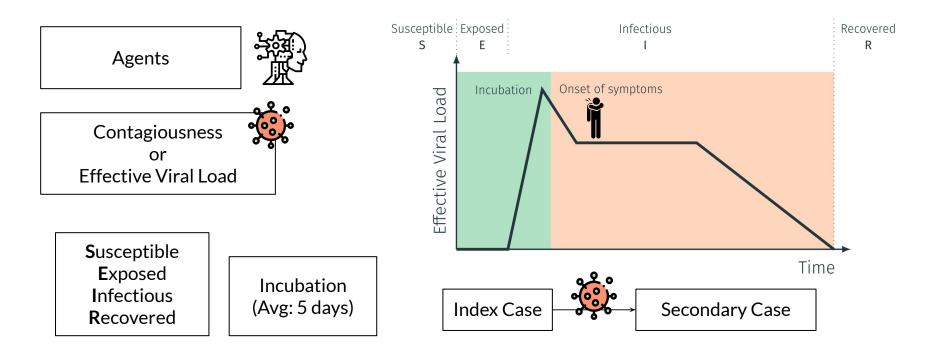


Gaetan Marceau Caron

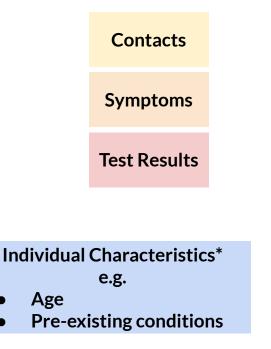
Joumana Ghosn

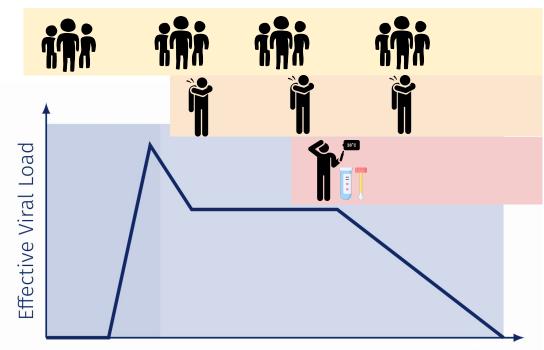
Nasim Rahman

Built Upon An Agent-Based Epidemiological Model



What we observe...

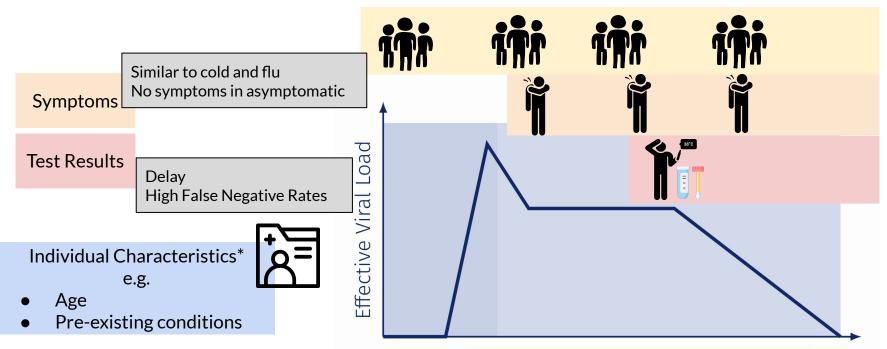




Time

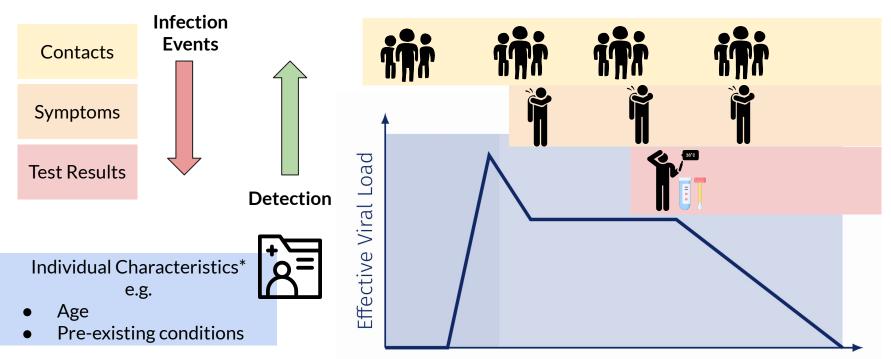
•

Noise in observations...



Time

Contact Tracing



Time

Landscape of tracing methods

	Manual Tracing	Digital Binary Tracing (BDT)	PRA (COVI)
Potential Contacts			
Clues Used			
Recommendations			

Manual Tracing is subject to memory challenges

	Manual T	racing	Digital Binary Tracing (BDT)	PRA (COVI)		
Potential Contacts						
Clues Used						
Recommendations		\bigcirc				

BDT provides precise contacts info, yet lacking some individual clues

	Manual T	racing		ary Tracing	PRA (COVI)
Potential Contacts				i f ip»	
Clues Used				Ĩ	
Recommendations		\bigcirc	\bigcirc	\bigcirc	

COVI encompasses BDT and profits from richer info from ABM

	Manual	Tracing	-	hary Tracing	PRA (COVI)		
Potential Contacts				i t e,		ite,	
Clues Used				Ĩ	e 1		
Recommendations		\bigcirc	\bigcirc	\bigcirc			

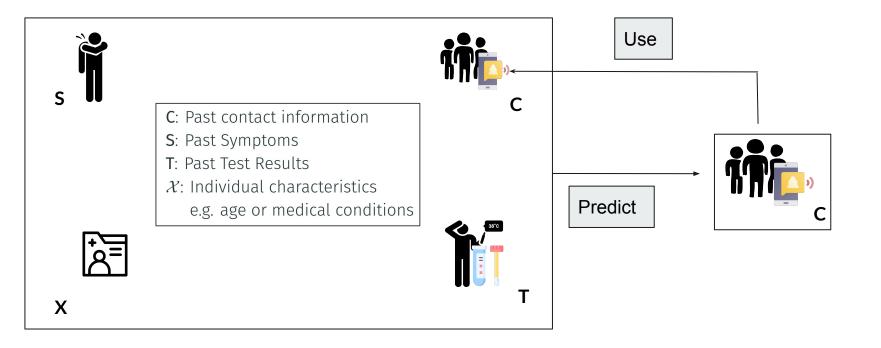
Probabilistic Risk Awareness (PRA): Framework

Predict today's and past contagiousness using all the clues

Send secure messages to previous contacts

Recommend user behavior based on **assessed risk levels** E.g. normal (green), wear mask/self-isolate (blue), quarantine (red)

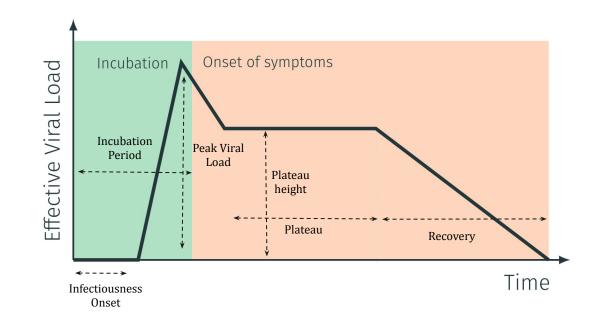
Clues used by PRA



Viral Load Curve

 ${\mathcal X}$ Individual Characteristics

> Functional form of Effective Viral Load (Contagiousness)



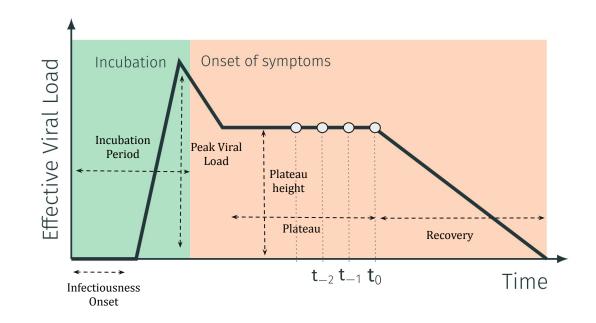
Viral Load Curve

 \mathcal{X} Individual Characteristics

t) Functional form of Effective Viral Load (Contagiousness)

For simplicity, we consider Effective Viral Load for each day in the past 14 days -

$$\mathcal{V}(t_{-14}, t_{-13}, ..., t_0)$$

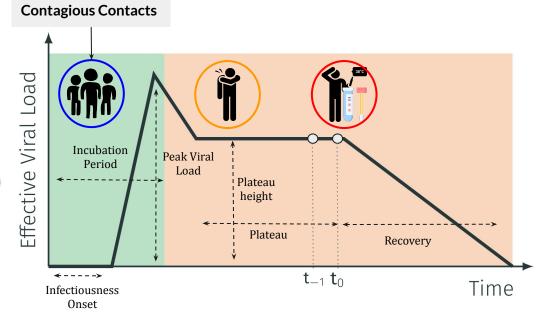


How simulated Viral Load Curve produces observables

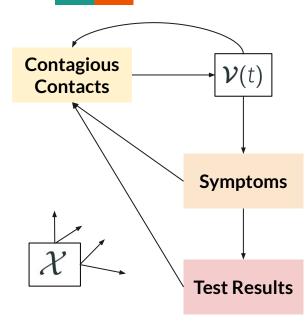
 $\mathcal{V}(t) = f(Contacts, \mathcal{X})$ Symptoms(t) = $f(\mathcal{V}(t), \mathcal{X})$

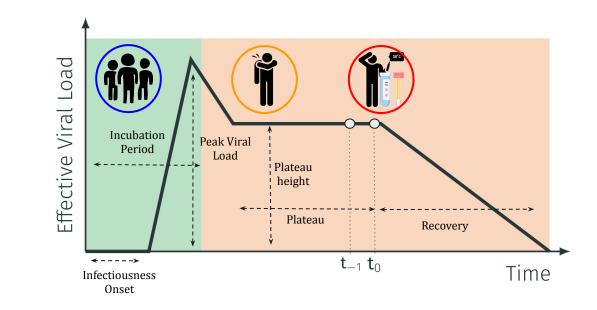
TestResults = $f(\boldsymbol{\mathcal{V}}, Symptoms, \mathcal{X})$

 $Contacts = f(\mathcal{V}, Symptoms, TestResults, \mathcal{X})$



Vicious Circle



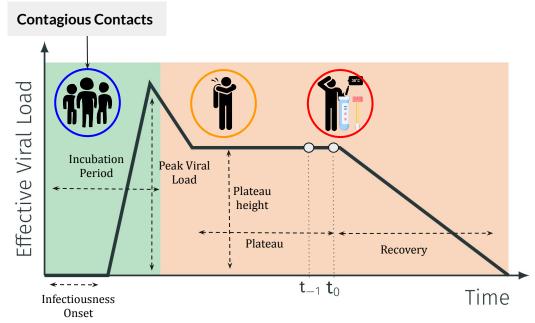


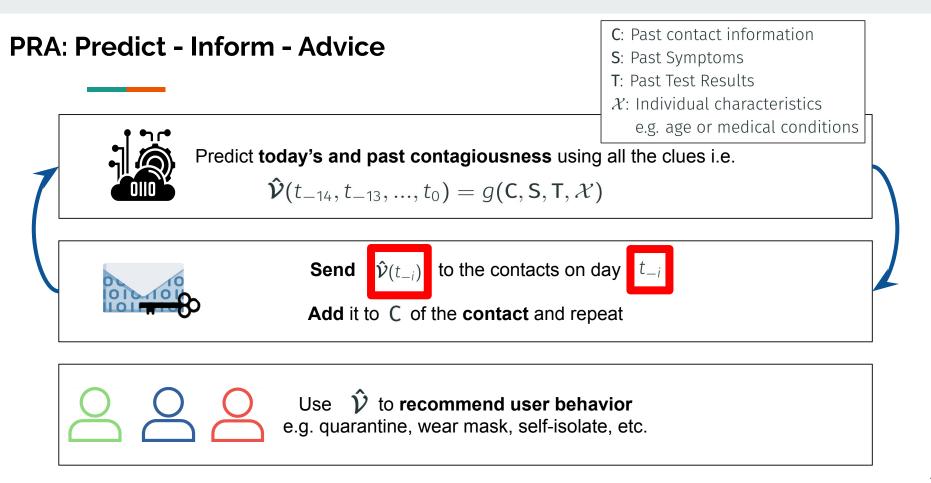
What to predict?

 $\mathcal{V}(t) = f(Contacts, \mathcal{X})$ Symptoms(t) = $f(\mathcal{V}(t), \mathcal{X})$ TestResults = $f(\mathcal{V}, Symptoms, \mathcal{X})$

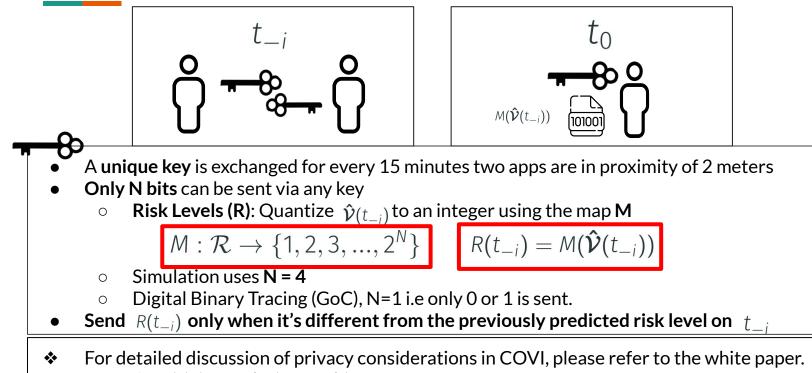
$$Contacts = f(\boldsymbol{\mathcal{V}}, Symptoms, TestResults, \boldsymbol{\mathcal{X}})$$

$$\mathcal{V}(t_{-14}, t_{-13}, \dots, t_0) = g(\mathsf{C}, \mathsf{S}, \mathsf{T}, \mathcal{X})$$

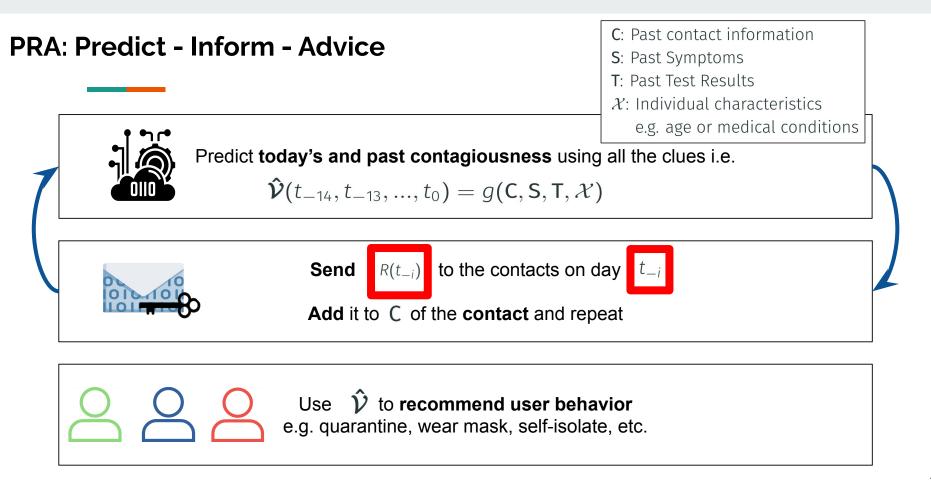




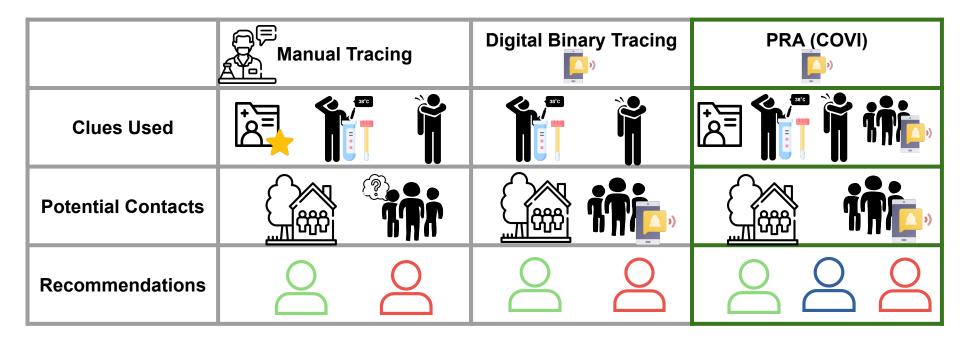
Privacy Preserving PRA

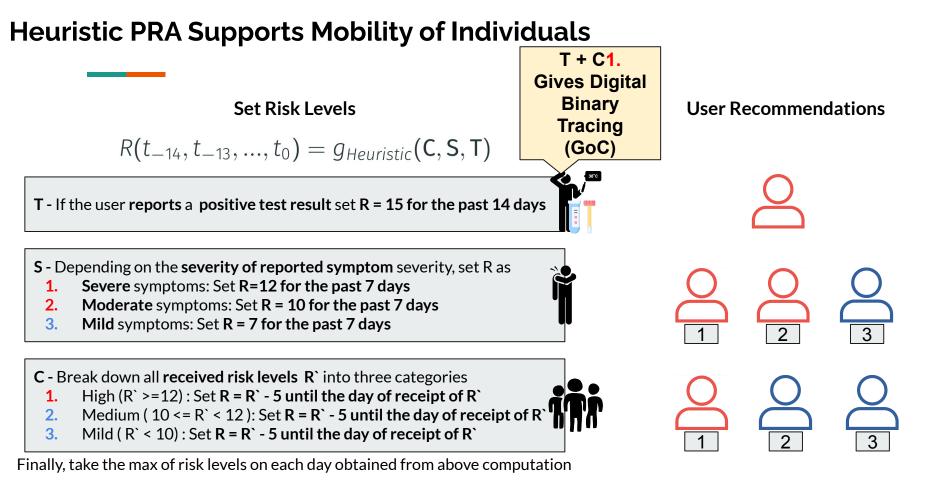


WIP - Sensitivity analysis on N bits

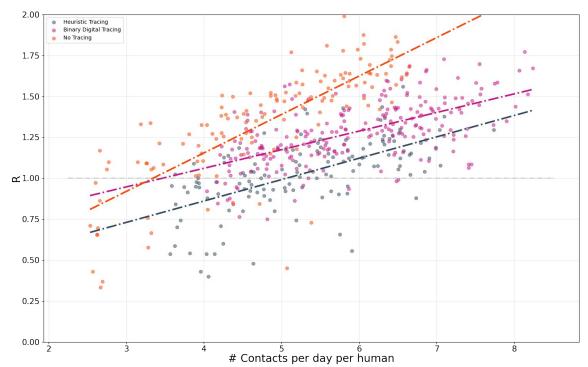


PRA provides multi-level recommendation thanks to richer clues



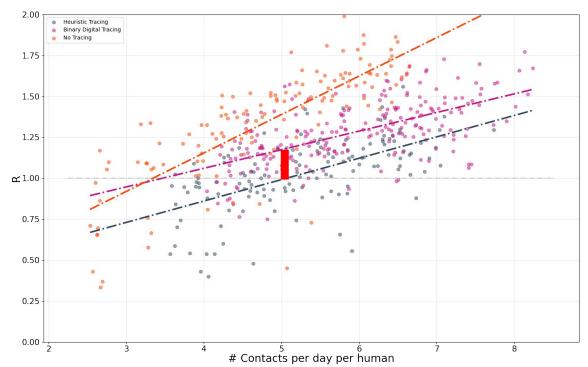


Simulation Results: COVI Balances Mobility and Virus Transmission (R)



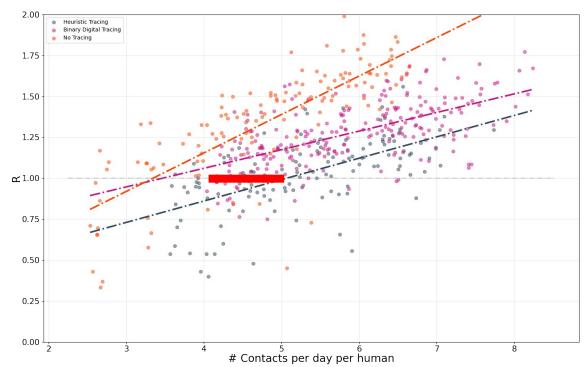
Tracing Operating Characteristics @ 60% Adoption Rate

Simulation Results: COVI Balances Mobility and Virus Transmission (R)



Tracing Operating Characteristics @ 60% Adoption Rate

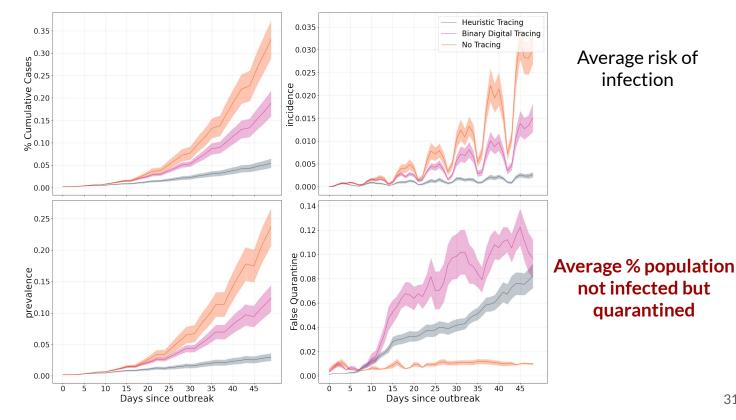
Simulation Results: COVI Balances Mobility and Virus Transmission (R)



Tracing Operating Characteristics @ 60% Adoption Rate

Simulation Results: Improved Case Curves Under COVI

Fraction of infected population up to date

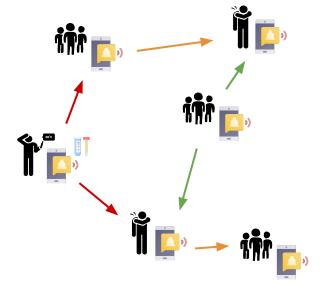


Fraction of population infected at any point in time

Why Machine Learning?

Why Machine / Deep Learning?

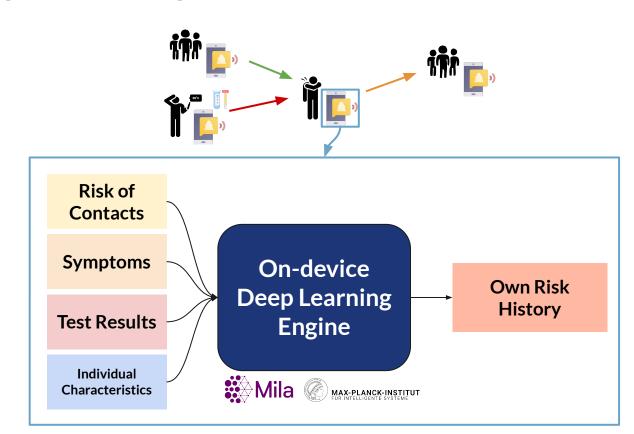
- It's tricky to decide what messages one user should send to the other about its risk.
 - In Binary Digital Tracing (BDT, GoC App), the decision is based on the test results.
 - But can we do better at sending early warning signals?
- Machine learning enables us to **learn** to decide what messages to send using real and simulation data in an automated and scalable way.



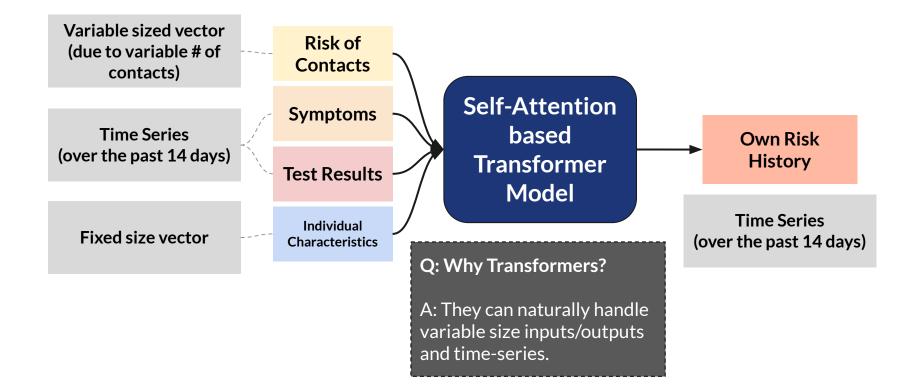
Example Scenario: Better Early Warning Signals

	М	т	W	т	F	S	S	М	т	W	т	F	S	S
Manual tracing only			Jim has a contact with high-risk stranger at the grocery store		Stranger starts showing symptoms		Stranger's symptoms grow worse	Jim GOES to work	Stranger sees doctor, gets tested	Test result comes back positive			Jim is contacted directly by public health	
Binary contact tracing	Jim installs the app		Jim has a contact with high-risk stranger at the grocery store		Stranger starts showing symptoms		Stranger's symptoms grow worse	Jim GOES to work	Stranger sees doctor, gets tested	Test result comes back positive			Jim is contacted directly by public health	
Our approach	Jim installs the app		Jim has a contact with high-risk stranger at the grocery store		Stranger starts showing symptoms		Stranger's symptoms grow worse	Jim DOES NOT go to work	Stranger sees doctor, gets tested	Test result comes back positive			Jim is contacted directly by public health	

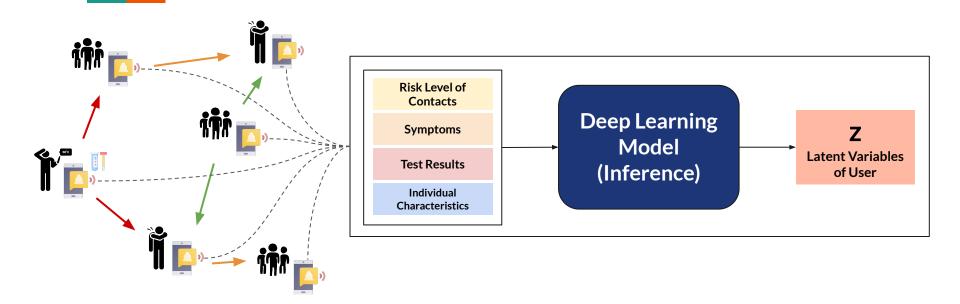
What happens on the phone?



The Deep Learning Engine Unboxed

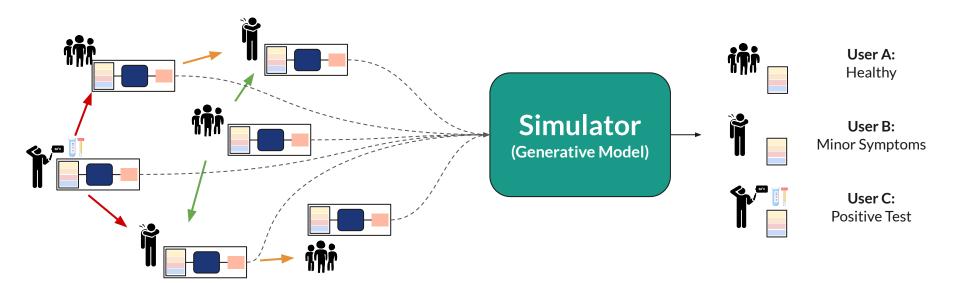


Learning from Real World Data (Work in Progress!)



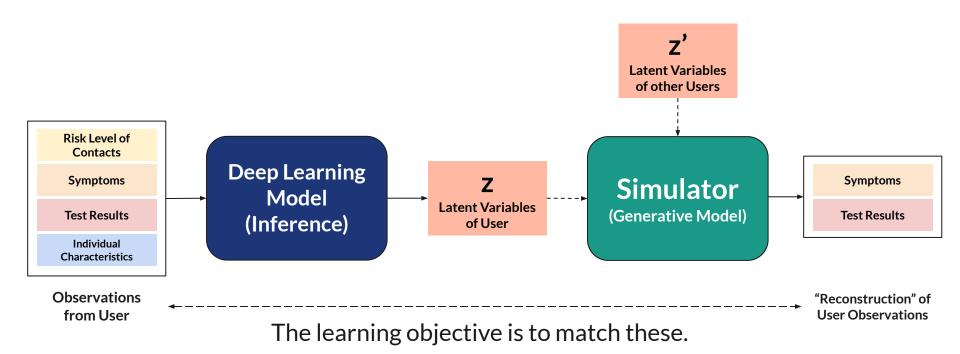
The "inference model" runs on every app-users' phone.

Learning from Real World Data (Work in Progress!)

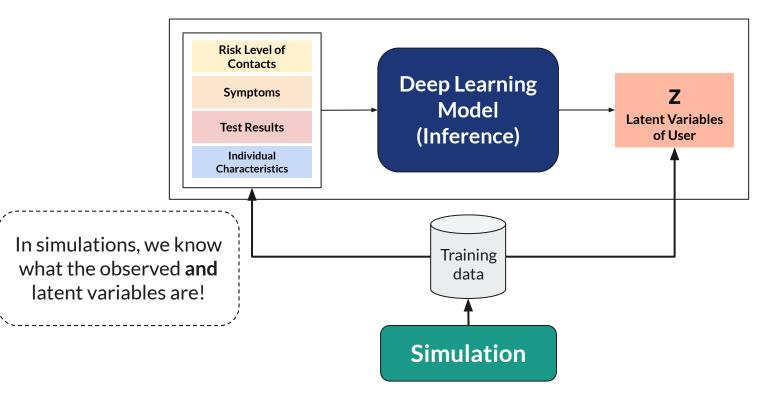


The "generative model" receives latent variables from every app user (who has consented), and predicts their respective states.

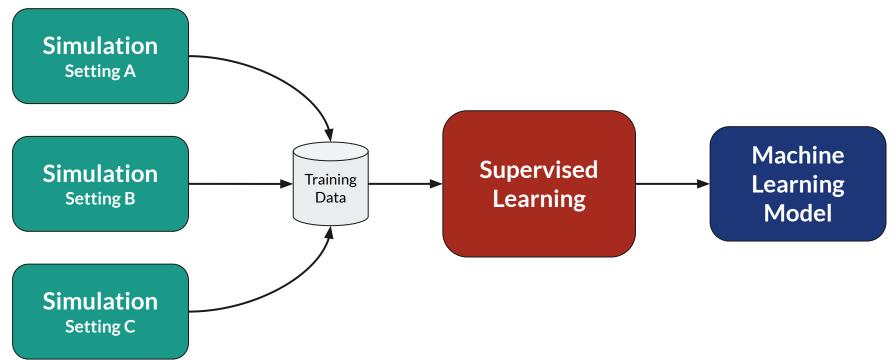
Learning from Real World Data (Work in Progress!)



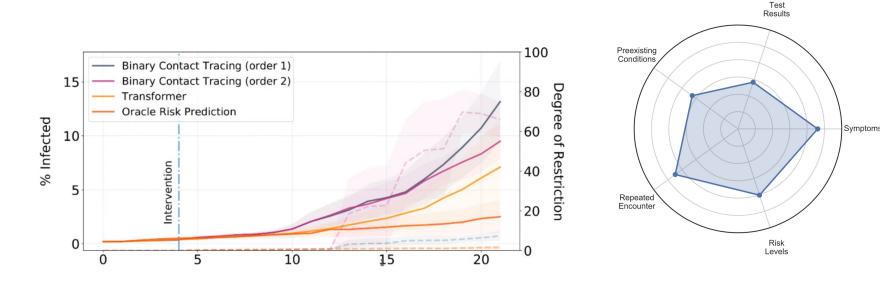
Milestone: Learning from Simulations



Learning from Domain Randomized Data



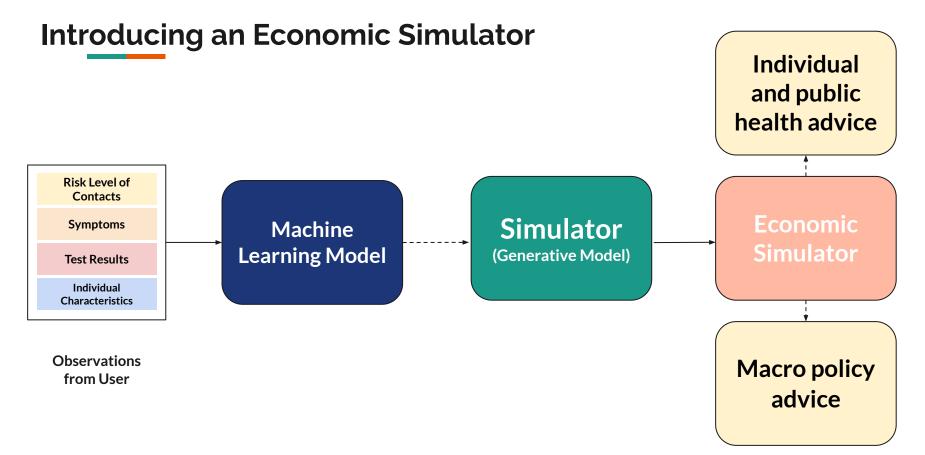
First Results



The transformer controls the infection better than BDT (while being less constraining)

Importance of input features for the transformer

The Health and Economic Impacts of Tracing

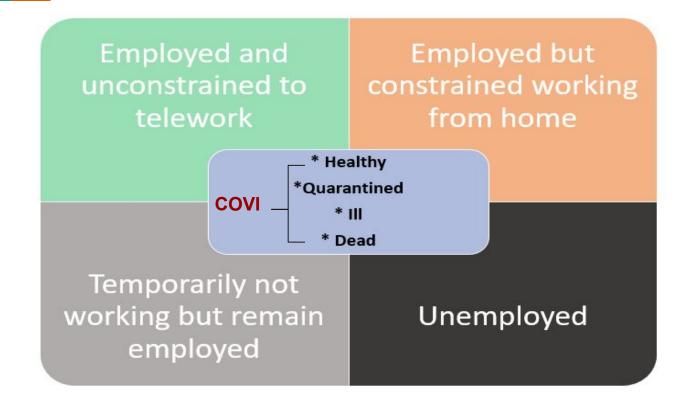


adaptER-COVID19: an application to national data

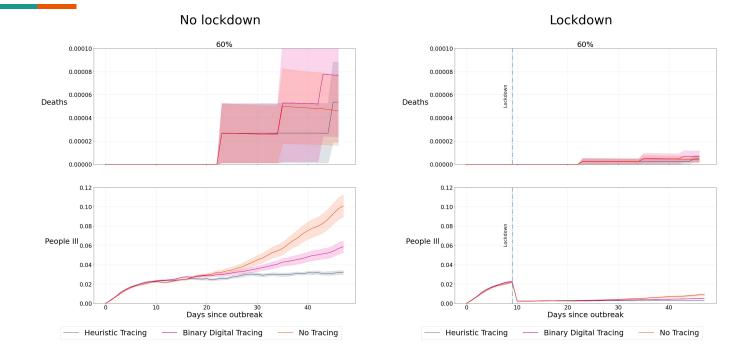
01	Input-output Model	 Labour, capital, imports as inputs for production Consumption, investment and export sectors
02	Corporate Bankruptcy Model	 Agent-based corporate defaults Connected to IO-Model through net operating surplus of companies
03	Individual Insolvency Model	 Model household earnings Behavior (fear factor) determining risk of insolvency

Source: <u>https://github.com/BDI-pathogens/OpenABM-Covid19</u> <u>https://www.coronavirus-fraser-group.org/</u>

Mapping COVI into a matrix of employment & health status

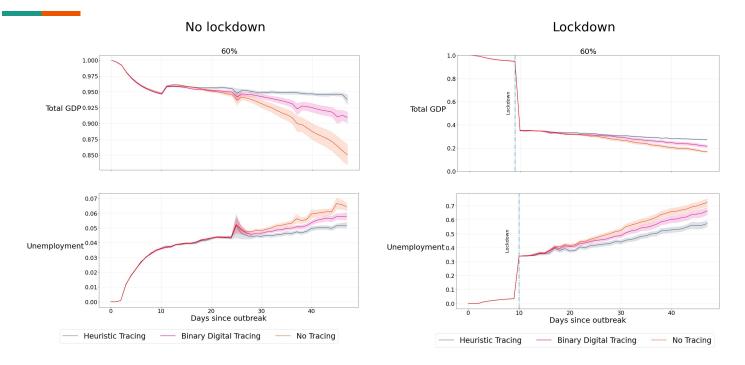


COVI improves health outcome (lower # of ill and deaths)...



Source: "The Daily - Study: Willingness of Canadians to use a contact tracing application", Statistics Canada. July 31, 2020. <u>https://www150.statcan.gc.ca/n1/daily-quotidien/200731/dq200731d-eng.htm</u>

... while incurring smaller economic cost (higher GDP & lower U rate)



Data source: Pathogen Dynamics group, University of Oxford, IBM UK. Data collection for Canada is underway. 4

Some limitations in adapterER - COVID19

- I-O model uses accounting identity, no pricing optimization
 - Switching to realistic production function considering input substitutability
- Modelling labour and capital market may benefit from general equilibrium models
 - Workers don't have the ability to switch jobs
 - No part-time, self-employment
- Don't account for interest payments and leverage of firms

ACTION: Expand the Health-Economic Frontier with Technology!

	No Tracing	Digital Binary Tracing	PRA (COVI)
Individual mobility (social wellbeing)	High, but at risk of forced lockdown	Low	Intermediate
Infection Transmission rate (R0)	High	Intermediate	Low
Economic impact (GDP, jobs)	Poor	Intermediate	Improved

Future Work & Limitations & Challenges

- Scalability of simulations
- Sensitivity Analysis on privacy parameters / economical scenarios / (WIP)
- Pilot cohort study
- Deployment in developing countries
- Evaluation of risk of getting infected
- Running AdaptER-Covid19 on Canadian Datasets with support mechanisms

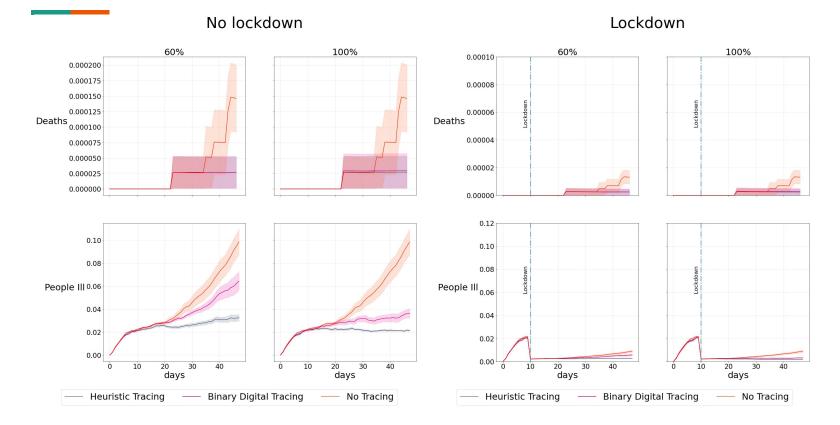
Ethical considerations

- Ensured privacy based on decentralized approach to data
- Cryptographic technology for risk information notification
- Pseudonymized nature of optional volunteered data
- Governance and inclusivity

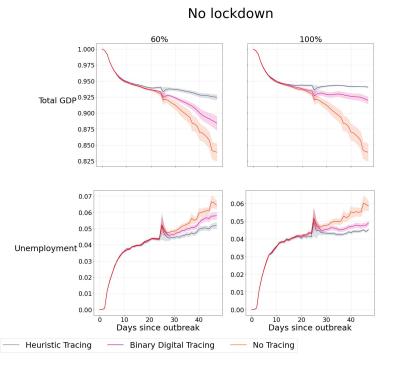
Preliminary Simulations

- Population size: 3000
- Initial number of infected individuals: 6 (0.2% of the population)
- 25% Asymptomatic population
- Number of tests per day = 3 (0.1% of the population)
- Behavior Modifications -
 - Low Risk Agents have 1/8th of the contacts as compared to pre COVID-19 contacts
 - Medium Risk Agents have 1/4th of the contacts as compared to pre-COVID-19 contacts
 - High Risk Agents have 0 contacts (Quarantine)
- Adherence to recommendations is modeled via dropout of 0.02 probability of following the recommendations
- Quality of self-diagnosis is modeled via dropout on symptoms of 0.2 i.e a user is 20% likely to not report their specific symptoms

100% adoption rate comparison



100% adoption rate comparison



Lockdown

